1. (a) Complete the table for the function y = 2 sin x
x (°) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
sin(3x) | 0 | 0.5000 | -0.8660 | ||||||||||
y | 0 | 1.00 | -1.73 |
(b) (i) Using the values in the completed table, draw the graph of
y = 2 sin 3x for 00 ≤ x ≤ 1200 on the grid provided
(ii) Hence solve the equation 2 sin 3x = -1.5
2. Complete the table below by filling in the blank spaces
x (°) | 0 | 30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 | 330 | 360 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cos x° | 1.00 | 0.50 | -0.87 | -0.87 | |||||||||
2 cos 1/2 x° |
2.00 | 1.93 | 0.52 | -1.00 | -2.00 |
Using the scale 1 cm to represent 300 on the horizontal axis and 4 cm to represent 1 unit on the
vertical axis draw, on the grid provided, the graphs of y = cosx° and y = 2 cos ½ x° on the same
axis.
(a) Find the period and the amplitude of y = 2 cos ½ x°
(b) Describe the transformation that maps the graph of y = cos x° on the graph of y = 2 cos 1/2
x°
3. (a) Complete the table below for the value of y = 2 sin x + cos x.
x (°) | 0 | 30 | 45 | 60 | 90 | 120 | 135 | 150 | 180 | 225 | 270 | 315 | 360 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 sin(x) | 0 | 1.4 | 1.7 | 2 | 1.7 | 1.4 | 1 | 0 | -2 | -1.4 | 0 | ||
cos(x) | 1 | 0.7 | 0.5 | 0 | -0.5 | -0.7 | -0.9 | -1 | 0 | 0.7 | 1 | ||
y | 1 | 2.1 | 2.2 | 2 | 1.2 | 0.7 | 0.1 | -1 | -2 | -0.7 | 1 |
(b) Using the grid provided draw the graph of y=2sin x + cos x for 00. Take 1cm represent
300 on the x- axis and 2 cm to represent 1 unit on the axis.
(c) Use the graph to find the range of x that satisfy the inequalities
2 sin x cos x > 0.5
4. (a) Complete the table below, giving your values correct to 2 decimal places.
x (°) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
---|---|---|---|---|---|---|---|---|
tan(x) | 0 | |||||||
2x + 300 (°) | 300 | 50 | 70 | 90 | 110 | 130 | 150 | 170 |
sin(2x + 300) | 0.50 | 1 |
b) On the grid provided, draw the graphs of y = tan x and y = sin ( 2x + 300) for 00 ≤ x 700
Take scale: 2 cm for 100 on the x- axis
4 cm for unit on the y- axis
Use your graph to solve the equation tan x- sin ( 2x + 300 ) = 0.
5. Solve the equation 4 sin (x + 300) = 2 for 0 ≤ x ≤ 360º
7. Find all the positive angles not greater than 180º which satisfy the equation
Sin2 x – 2 tan x = 0
Cos x
8. Solve for values of x in the range 0º ≤ x ≤ 360º if 3 cos2 x – 7 cos x = 6
9. Simplify 9 – y2/y where y = 3 cos θ
10. Given that sin (90 – x) = 0.8. Where x is an acute angle, find without using mathematical tables
the value of tan xº